Example Candidate Responses Paper 2
Cambridge O Level
Mathematics (Syllabus D) 4024

For examination from 2018

In order to help us develop the highest quality resources, we are undertaking a continuous programme of review; not only to measure the success of our resources but also to highlight areas for improvement and to identify new development needs.

We invite you to complete our survey by visiting the website below. Your comments on the quality and relevance of our resources are very important to us.
www.surveymonkey.co.uk/r/GL6ZNJB

Would you like to become a Cambridge International consultant and help us develop support materials?

Please follow the link below to register your interest.
www.cambridgeinternational.org/cambridge-for/teachers/teacherconsultants/

Copyright © UCLES 2019

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

UCLES retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party, even for internal use within a Centre.

Contents

Introduction 4
Question 1 6
Example Candidate Response - high 6
Example Candidate Response - middle 8
Example Candidate Response - low 10
Question 2 12
Example Candidate Response - high 12
Example Candidate Response - middle 13
Example Candidate Response - low 14
Question 3 15
Example Candidate Response - high 15
Example Candidate Response - middle 17
Example Candidate Response - low 19
Question 4 21
Example Candidate Response - high 21
Example Candidate Response - middle 23
Example Candidate Response - low 25
Question 5 27
Example Candidate Response - high 27
Example Candidate Response - middle 29
Example Candidate Response - low 31
Question 6 33
Example Candidate Response - high 33
Example Candidate Response - middle 35
Example Candidate Response - low 37
Question 7 39
Example Candidate Response - high 39
Example Candidate Response - middle 41
Example Candidate Response - low 43
Question 8 45
Example Candidate Response - high 45
Example Candidate Response - middle 46
Example Candidate Response - low 47
Question 9 49
Example Candidate Response - high 49
Example Candidate Response - middle 51
Example Candidate Response - low 53
Question 10 55
Example Candidate Response - high 55
Example Candidate Response - middle 57
Example Candidate Response - low 59
Question 11 61
Example Candidate Response - high 61
Example Candidate Response - middle 62
Example Candidate Response - low 63

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge O Level Mathematics (Syllabus D) 4024, and to show how candidates' performance (high, middle, low) relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen from June 2018 scripts to exemplify a range of answers.
For each question, the response is annotated with a clear explanation of where and why marks were awarded or omitted. This is followed by examiner comments on how the answer could have been improved. In this way, it is possible for you to understand what candidates have done to gain their marks and what they could do to improve their answers. There is also a list of common mistakes candidates made in their answers for each question.

This document provides illustrative examples of candidate work with examiner commentary. These help teachers to assess the standard required to achieve marks beyond the guidance of the mark scheme. Therefore, in some circumstances, such as where exact answers are required, there will not be much comment.

The questions and mark schemes and pre-release material used here are available to download from the School Support Hub. These files are:

June 2018 Question Paper 21
June 2018 Paper 21 Mark Scheme

Past exam resources and other teacher support materials are available on the School Support Hub: www.cambridgeinternational.org/support

How to use this booklet

This booklet goes through the paper one question at a time, showing you the high level response for each question. The candidate answers are set in a table. In the left-hand column are the candidate answers, and in the right-hand column are the examiner comments.

Example Candidate Response - Question 1, high

Examiner comments

1 (a) Evaluate $\frac{4}{11}-\frac{2}{7}$.

(b) Evaluate 0.9×0.011.
0.011
$\times 0.9$
Answers are by real candidates in exam conditions. These show you the types of answers for each level. Discuss and analyse the answers with your learners in the classroom to improve their skills.
The candidate shows a clear method to write both fractions with a common denominator.
(2) They subtract the numerators to reach the correct answer. Mark for (a) = 1 out of 1
3. They perform a long

Examiner comments are alongside the answers. These explain where and why marks were awarded. This helps you to interpret the standard of Cambridge exams so you can help your learners to refine their exam technique.

How the candidate could have improved their answer

The candidate could have written the two equivalent fractions as the first step. It was not necessary to show the multiplications leading to these fractions.

This section explains how the candidate could have improved each answer. This helps you to interpret the standard of Cambridge exams and helps your learners to refine their exam technique.

Common mistakes candidates made in this question

They did not write the fractions with a common denominator and simply subtracted the numerators and denominators separately leading to an answer of 2/4.

Often candidates were not awarded marks because they misread or misinterpreted the questions.

Lists the common mistakes candidates made in answering each question. This will help your learners to avoid these mistakes and give them the best chance of achieving the available marks.

Question 1

Example Candidate Response - high

Examiner comments

1 (a) Use set notation to describe the shaded region in the Venn diagram.

Answer ceno)
(b) $\quad \varepsilon=\{1,2,3,4,5,6,7,8,9,10,11,12\}$

$$
\begin{array}{ll}
A=\{x: x \text { is a factor of } 12\} & 1,2,3,4,6,12 \\
B=\{x: x \text { is a multiple of } 2\} & 2,4,6,8,10,\} \\
C=\{x: x \text { is a square number }\} & 1,4,9
\end{array}
$$

(i) Show this information on the Venn diagram below.

(ii) Find $\mathrm{n}(A \cap B)$.

3
Answer \qquad 4 [1]
(iii) Find $\mathrm{n}\left(A \cap(B \cup C)^{\prime}\right)$.
Answer
(iv) One subset in the Venn diagram in part (b)(i) has no elements.

Use set notation to describe this subset.

The candidate confuses giving the number of elements in a set with describing the set using set notation.
Mark for (a) $=1$ out of 1
Mark for (b)(i) $=2$ out of 2
Mark for (b)(ii) $=1$ out of 1 Mark for (b)(iii) $=1$ out of 1 Mark for (b)(iv) $=0$ out of 1

Example Candidate Response - high, continued

(c) (i) Write 540 as the product of its prime factors.

(ii) p is the smallest possible integer such that $540 p$ is a square number.

Find $\sqrt[3]{540 p}$, giving your answer as the product of its prime factors.

$$
2^{2} \times 33
$$

Answer

Examiner comments

Mark for (c)(i) $=2$ out of 2

2 The candidate doesn't connect the previous answer with this part and they do not show that it is necessary to have all even numbers for the indices of a square number.
Mark for (c)(ii) $=0$ out of 2

Total mark awarded = 7 out of 10

How the candidate could have improved their answer

- (b)(iv) The candidate should have described the required subset, instead of giving the number of elements in a set.
- (c)(ii) The answer would have been improved by connecting the previous answer with this part question and the candidate should have known that it was necessary to have all even powers for a square number, written as a product of its prime factors.

Example Candidate Response - middle

1 (a) Use set notation to describe the shaded region in the Venn diagram.

Answer $\quad(P \cup Q)^{\prime}$
(b) $\quad \mathbb{E}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$A=\{x: x$ is a factor of 12$\}$
$B=\{x: x$ is a multiple of 2$\}$
$C=\{x: x$ is a square number $\}$
(i) Show this information on the Venn diagram below.

(ii) Find $\mathrm{n}(A \cap B)$.

(iii) Find $\mathrm{n}\left(A \cap(B \cup C)^{\prime}\right)$.

Answer

(iv) One subset in the Venn diagram in part (b)(i) has no elements.

Use set notation to describe this subset.
(3)

Answer $(A \cap C$ [1]

Examiner comments

Mark for (a) = 1 out of 1

Mark for $(b)(i)=1$ out of 2

1. The candidate shows all the correct elements in the required subset, but only gives the answer 3 instead of 4.
Mark for (b)(ii) $=0$ out of 1

2 The candidate shows the correct element, 3 , in the correct subset on the diagram, but gives the incorrect answer of 0 instead of 1 .
Mark for (b)(iii) $=0$ out of 1
3. The answer is incorrect. It is possible however, to describe an acceptable Follow Through alternative subset e.g. $A \cap C \cap B^{\prime}$. Mark for (b)(iv) $=0$ out of 1

Example Candidate Response - middle, continued

(c) (i) Write 540 as the product of its prime factors.

$$
\begin{aligned}
540 & =2 \times 2 \times 3 \times 3 \times 3 \times 5 \\
& =2^{2} \times 3^{3} \times 5^{1} \\
& 2^{2} \times 3^{3} \times 5
\end{aligned}
$$

(ii) p is the smallest possible integer such that $540 p$ is a square number:

Find $\sqrt{540 p}$, giving your answer as the product of its prime factors.

$$
\begin{aligned}
s 40 & =2^{2} \times 3^{3} \times 5 \\
540 p & =2^{2} \times 3^{2} \times 3^{2} \times 5^{2} \\
\sqrt{540 p} & =\left(2^{2} \times 3^{8} \times 3^{2} \times 5\right)^{2} \times \frac{1}{2} \\
& =2 \times 3 \times 3 \times 5 \\
& =9
\end{aligned}
$$

(a) Same invests $\$ 2000$ in an account paying compound interest at a rate of 1.8% per year.

Calculate the total interest paid to Same after 3 years:

$$
\begin{aligned}
\text { Compound interest } & =2000 \times\left(1+\frac{1,8}{100}\right)^{3} \\
& =200 \times(1+0018)^{3} \\
& =2000 \times(1,018)^{3} \\
& =2000 \times 1105497783 \\
& =2109,9556642109,96 \\
& =2109 / 96
\end{aligned}
$$

(b) Theresa, takes out a loan.

She repays the loan over one year at a rate of \$54 per month.
The total she repays is 8% greater than the value of the original loan.
Work out. the value of the original loan.

$$
\begin{aligned}
100 \%= & \$ 84 \times 12 \text { 'matter } \\
= & \$ 648 \\
108 \%= & ? \frac{\text { mare }}{108 \times} 648=699,84 \\
& \frac{108}{100}=699,84
\end{aligned}
$$

Examiner comments

Mark for (c)(i) $=2$ out of 2

Mark for (c)(ii) $=2$ out of 2
Total mark awarded = 6 out of 10

How the candidate could have improved their answer

- (b)(ii) The candidate had all the correct elements in the subset, but gave answer as 3 not 4. They might have only counted the elements 2, 6 and 12 as being the correct required elements and disregarded the ' 4 '.
- (b)(iii) The candidate should have given 1 as the answer. It is possible that they mistakenly thought, that the given set notation, they had to identify either of the two empty subsets on his diagram.
- (b)(iv) The correct subset was not identified. The candidate could have given an alternative answer of $A \cap C \cap B^{\prime}$, which would have identified an empty subset, for his diagram.

1 (a) Use set notation to describe the shaded region in the Venn diagram.

Answer Pno 1
(b) $\quad \mathscr{E}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$A=\{x: x$ is a factor of 12$\}, 2,3,4,6,12$
$B=\{x: x$ is a multiple of 2$\} \sim, 4,6,8,10,12$
$C=\{x: x$ is a square number $\}, 1$
(i) Show this information on the Venn diagram below.

(ii) Find $\mathrm{n}(A \cap B)$.
\qquad
(iii) Find $\mathrm{n}\left(A \cap(B \cup C)^{\prime}\right)$.
\qquad
(iv) One subset in the Venn diagram in part (b)(i) has no elements.

Use set notation to describe this subset.

1 The candidate does not give the correct answer of $(P \cup Q)^{\prime}$ or $P^{\prime} \cap Q^{\prime}$.
Mark for (a) = 0 out of 1

2 Nine has been put in the incorrect subset.
Mark for (b)(i) = 1 out of 2 Mark for (b)(ii) $=1$ out of 1

3 The element, 3, has been put in the correct position on the Venn diagram, but the wrong answer of 4 instead of 1 has been given. Mark for (b)(iii) = 0 out of 1
4. The candidate gives the symbol for the empty set, instead of describing the required subset, using set notation.
Mark for (b)(iv) $=0$ out of 1

Example Candidate Response - low, continued

Examiner comments

(c) (i) Write 540 as the product of its prime factors.

58	540
4	108
3	27
3	9
3	3
	1

Answer $.5 \times 4+3 \times 3 \times 3$
(ii) p is the smallest possible integer such that $540 p$ is a square number.

Find $\sqrt{540 p}$, giving your answer as the product of its prime factors.

```
\sqrt{smou}{\rho}=\frac{\hat{S}}{(5+0\rho\rho\mp@subsup{)}{}{2}}
6)
```

(a) Sami invests $\$ 2000$ in an account paying compound interest at a rate of 1.8% per year

Calculate the total interest paid to Sami after 3 years.

Answer \$ 109
(b) Theresa takes out a loan

She repays the loan over one year at a rate of $\$ 54$ per month.
The total she repays is 8% greater than the value of the original loan.
Work out the value of the original loan.

$$
\begin{aligned}
& 8 S 50+12=\$ 648 \\
& 8 \% \text { of } 648 \\
&= 640 \$-51,84 x \\
&= \frac{8}{100}+\frac{6408}{1} \\
&= 51,848
\end{aligned}
$$

5 The candidate needs to show the factors of 4 , as 2×2. Mark for (c)(i) $=1$ out of 2

6 The candidate does not recognise that this part question follows on from the previous part and that the indices of a square number must all be even numbers.
Mark for (c)(ii) $=0$ out of 2

Total mark awarded = 3 out of 10

How the candidate could have improved their answer

- (a) The candidate needed to give correct answer of $(P \cup Q)^{\prime}$ or $P^{\prime} \cap Q^{\prime}$.
- (b)(i) The candidate should have put the element ' 9 ', in the correct position on the Venn diagram.
(iii) The correct answer was 1, as the single element, ' 3 ', had been put in the correct subset on the Venn diagram.
(iv) The candidate puts the empty set, \varnothing, instead of $A^{\prime} \cap B \cap C$.
- (c)(i) The correct answer was 2×2 instead of 4 .
(ii) The candidate did not see the connection with previous part, which was needed here.

Common mistakes candidates made in this question

Candidates confused finding the number of elements in a subset with listing all the elements in that particular subset.

Question 2

Example Candidate Response - high

Examiner comments

2 (a) Sami finvests $\$ 2000$ in an account paying compound interest at a rate of 1.8% per year.
Calculate the total interest paid to Sami after 3 years.

$$
\begin{aligned}
& =2000\left(1+\frac{1.8}{1000}\right)^{3} \\
& =2000 * 1.055 \\
& =2100
\end{aligned}
$$

Answer $\$2110$
(b) Theresa takes out a loan.

She repays the loan over one year at a rate of $\$ 5.4$ per month.
The total she repays is 8% greater than the value of the original loan.
Work out the value of the original loan.

$$
\begin{aligned}
& =54 \times 12 \\
& =648
\end{aligned}
$$

$$
648=108
$$

$$
x=100
$$

$$
x=\frac{648 \times 100}{108}
$$

Answer \$ 600
The candidate correctly finds the amount after the 3 years, but now needs to subtract the original sum invested in order to obtain the total interest paid.
Mark for (a) = 2 out of 3

$$
=600
$$

Mark for (b) = 3 out of 3

Total mark awarded = 5 out of 6

How the candidate could have improved their answer

(a) The candidate correctly found the amount $\$ 2110$, but did not subtract the original investment of $\$ 2000$ to obtain the total interest paid.

Example Candidate Response - middle

2
(a) Sami invests $\$ 2000$ in an account paying compound interest at a rate of 1.8% per year.

Calculate the total interest paid to Sami atter 3 years.

$$
\begin{aligned}
& A\left(1+\frac{R}{100}\right) \\
& 2000\left(1+\frac{1.8}{100}\right)^{3}=2000(1.018)^{3}=2000 \times 1.05498 \\
&=2109.96
\end{aligned}
$$

$$
2109.96 \approx 35.15 \$ 2110
$$

Answer \$.2.2t
(b) Theresa takes out a loan.

She repays the loan ovet one year at a rate of $\$ 54$ per month.
The total she repays is 8% greater than the value of the original loan.
Work out the value of the original loan.

$$
\begin{aligned}
& 54 \times 12=\$ 648 \\
& x+\frac{8}{100} x=648+x \\
& x+\frac{8 x}{100}=-648+x \quad 8 x=64800+100 x \\
& x+\frac{8 x}{100}-x=648 \quad \frac{8 x}{100}=648 \quad 8 x=64800
\end{aligned}
$$

Examiner comments

1 The candidate correctly finds the amount after the 3 years, but now needs to subtract the original sum invested, in order to obtain the total interest paid. Mark for (a) $=2$ out of 3

2 The candidate correctly finds the total amount repaid, \$648.

3 An incorrect equation has been given here. It should be:
$x+\frac{8 x}{100}=648$.
Mark for (b) $=1$ out of 3

Total mark awarded = 3 out of 6

How the candidate could have improved their answer

- (a) The candidate did not subtract the original investment from the amount, to obtain the total interest paid.
- (b) The candidate correctly obtained $\$ 648$, but did not know that the original loan was $\$ x=\frac{648}{1.08}$ or equivalent, which was the next step that was needed.

Example Candidate Response - low

Examiner comments

2 (a) Sami ivvests $\$ 2000$ in an accoint paying compound interest at a rate of $1: 8 \%$ per year.
Calculate the total interest paid to Sami after 3 years.

$$
\begin{aligned}
\frac{225}{100} & =\frac{20 \phi 6 \times 1.8 \times 3}{100} \\
& =108
\end{aligned}
$$

1 The candidate is incorrectly using the Simple Interest formula and not the Compound Interest formula.
Mark for (a) = 0 out of 3

2 The candidate correctly finds the total amount repaid, \$648.

3 The candidate should now use the calculation:
original loan $=\left(\frac{648}{108}\right) \times 100$.
Mark for (b) =1 out of 3

Total mark awarded = 1 out of 6

How the candidate could have improved their answer

- (a) The Simple Interest formula was incorrectly used, instead of using Compound Interest.
- (b) The candidate was able to obtain $\$ 648$, but did not know that $\$ x=\frac{648}{1.08}$ was the next step that was required.

Common mistakes candidates made in this question

- (a) Some candidates did not subtract the original investment of $\$ 2000$ from the new amount of $\$ 2110$, in order to obtain the total interest paid.
- (b) Some candidates made the error of finding 8% of $\$ 648$ and then subtracting this amount from $\$ 648$ to obtain their answer.

Question 3

Example Candidate Response - high

Examiner comments

3 (a) Solve $4(p-3)=2 p+7$.
$4 p-12=2 p+7$
$4 p-2 p=12+7$
$2_{p}=19$
$p=19 / 2=9.5$
(b) Solve these simultaneous equations.

$$
\begin{aligned}
& 2 x-y=5 \\
& 7 x+2 y=1
\end{aligned}
$$

Show your working.

```
            \(2 x-y=5-\ldots\)
            \(7 x+2 y=1 \ldots\) (2)
from (1)
    \(2 x-y=5\)
    \(y=2 x-5 \cdots(3)\)
put (3) into (2)
    \(7 x+2 y=1\)
    \(7 x+2(2 x-5)=1\)
    \(7 x+4=c-10=1\)
            an \(11 x=10+1\)
                \(11 x=1\)
                \(x=1\)
```



```
\(2-y=5\)
\(2-5=y\)
\(-3=y\)
\(y=-3\)
```


Answer $p=9$.
[2]
\qquad[2]

Mark for (a) = 2 out of 2

Mark for (b) = 3 out of 3

Example Candidate Response - high, continued
(c) Simplify $\frac{m^{2}+3 m}{2 m^{2}+5 m-3}$.

Examiner comments

1 The candidate factorises the numerator correctly.

2 The candidate needs to factorise the denominator correctly as $(2 m-1)(m+3)$ in order to be able to progress to the final answer.
Mark for (c) = 1 out of 3

Mark for (d) = 3 out of 3

Total mark awarded = 9 out of 11

How the candidate could have improved their answer

(a) The candidate was able to factorise the numerator, but was unable to factorise the quadratic expression and hence could not proceed to cancel the required terms, in order to obtain the final answer.

3 (a) Solve $4(p-3)=2 p+7$.

$$
\begin{gathered}
4(p-3)=2 p+7 \\
4 p-12=2 p+7 \\
4 p-2 p=7+12 \\
\frac{2 p}{2}=\frac{19}{2}
\end{gathered}
$$

\qquad [2]
(b) Solve these simpultaneous equations.

$$
\begin{aligned}
& 2 x-y=5 \\
& 7 x+2 y=1
\end{aligned}
$$

Show your working.

$$
\begin{gathered}
200-4=5 \\
70 c+2 y=1 \\
y=2 x-5 \\
\text { in in } 70 c+2(2 x-5)=1 \\
7 x+40-10=1 \\
\frac{110 c}{4}=11 \\
x=1 \\
\text { in } \\
\text { in (i) } 2(1)-y=5 \\
2-y=5 \\
-3=y
\end{gathered}
$$

Mark for $(\mathrm{a})=2$ out of 2

Mark for (b) = 3 out of 3

Examiner comments

(c) Simplify $\frac{m^{2}+3 m}{2 m^{2}+5 m-3}$.

1 The candidate needs to factorise the numerator as $m(m+3)$.

2 The candidate needs to factorise the denominator as $(2 m-1)(m+3)$.
Mark for (c) $=0$ out of 3
(d) b is dixectly proportional to the cube of a.

Given that $b=4$ when $a=2$, find b when $a=5$.
$b \propto a^{3}$
$b=k a^{3}$
$4=k 2^{3}$

$\frac{4}{8}=\frac{7 k}{8}$

$$
\begin{array}{r}
12=a^{3} \\
125 s^{3}
\end{array}
$$

$k=2 \quad b<2 a^{3}$

$$
b=2(5)^{3}
$$

(4)

Answer $b=425$ 250 [3]
$b=250$
4. The candidate incorrectly evaluates the constant of proportionality as 2 , instead of $\frac{1}{2}$. Mark for (d) = 1 out of 3

Total mark awarded = 6 out of 11

How the candidate could have improved their answer

- (c) The candidate did not show any understanding of what was required in factorising, either the numerator or denominator.
- (a) The candidate correctly used $b=k a^{3}$, but obtained $k=2$ instead of $k=\frac{1}{2}$, from incorrect working. The candidate should have reached the equation of proportionality, $b=\frac{1}{2}(5)^{3}$ next and from there obtained the correct final answer.

3 (a) Solve $4(p-3)=2 p+7$.

$$
\begin{gathered}
4 p-12=2 p+7 \\
\frac{2 p}{2}=\frac{+9}{2} \\
p=9.5
\end{gathered}
$$

Answer $p=9 \cdot \overline{5}$
(b) Solve these simultaneous equations.

$$
\begin{aligned}
& 2 x-y=5 \\
& 7 x+2 y=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Show your working. } \\
& 7 \times 2 x-y=5 \times 7 \\
& 2 \times 7 x+2 y=1 \times 2 \\
& 14 x-7 y=35 \\
& \begin{array}{r}
\frac{14 x+4 y}{}=2 \\
=\frac{x y=38}{x+11} \\
y=* 3 .
\end{array} \\
& 4 \times 2 x-y=584 \\
& 2 \times 7 x+2 y=1 \times 2 \\
& 8 x-4 y=20 \\
& \begin{array}{l}
14 x+4 y=2 \\
-6 x+y=18
\end{array}
\end{aligned}
$$

$\begin{gathered}3 \\ y \\ y\end{gathered}=\ldots . .$.

1 The correct method of elimination has been used, but makes arithmetic error by obtaining
$y=3$ and not $y=-3$.
Mark for (b) $=1$ out of 3

Example Candidate Response - low, continued
(c) Simplify $\frac{m^{2}+3 m}{2 m^{2}+5 m-3}$.

7
 [3]
(d) b is directly proportional to the cube of a.

Given that $b=4$ when $a=2$, find b when $a=5$.

$$
b \propto a^{3}
$$

(3) $4 \propto 2^{3}$

$b \times 125$

Examiner comments

2 The candidate is not showing any correct factorisation. It needs to show numerator is $m(m+3)$ and denominator is $(2 m-1)(m+3)$.
Mark for (c) $=0$ out of 3

3 This is not sufficient. The candidate needs to write the equation of proportionality here, $b=k a^{3}$.
Mark for (d) $=0$ out of 3

Total mark awarded = 3 out of 11

How the candidate could have improved their answer

- (b) The candidate used the correct method of elimination in reaching $-11 y=33$, but then lost accuracy and gave $y=3$, so was unable to obtain either of the two correct values for x or y, thus no further marks were earned.
- (a) The candidate did not show any correct factorising of either the numerator of the denominator, so no marks could be awarded.
- (b) The equation of proportionality should have been written, $b=k a^{3}$, not just $b \propto a^{3}$, in order to be awarded marks.

Common mistakes candidates made in this question

(a) Some candidates did not always read the question carefully enough. Some gave answers that referred to $b=\frac{1}{a^{3}}$ or $b=\sqrt[3]{a}$

Question 4

Example Candidate Response - high

Examiner comments

4

Twelve lettered tiles spelling the word TRIGONOMETRY are placed inside a bag.
(a) A.tile is taken at random from the bag.

Find the probability that the tile shows a letter R.
Give your answer as a fraction in its simplest form,
Mo of Rs $=2$ Total files $=\{2$

$$
\text { Probability }=\frac{1}{1 / 26}=1 / 6
$$

Answer
 16

Mark for (a) = 1 out of 1
(b) All the tiles are placed back in the bag, a tile is then taken at random and placed on the table. A second tile is taken at random and placed to the right of the first tile.
A third tile is taken at random and placed to the right of the second tile.

Find the probability that, in the order the tiles were placed on the table, they spell GET.
Probability is without replacement
$G=\frac{1}{12} \quad E=\frac{1}{11} \quad T=\frac{2}{10}=\frac{1}{5}$
Probability of $G E T=\frac{1}{12} \times \frac{1}{11} \times \frac{1}{5}=\frac{1}{660}$
\qquad

Mark for (b) $=2$ out of 2
(c) Vowels are the letters $\mathrm{A}, \mathrm{E}, \mathrm{I}, \mathrm{O}$ and U .

All other letters are consonants.
All the twelve tiles are placed back in the bag and two tiles are taken at random, without replacement.
(i) Complete the tree diagran.

(ii) Find the probability that the tiles both show vowels.

$$
4 / 4 \times 3 / 11=3
$$

(iii) Find the probability that one tile shows a vowel and one tile shows a consonant.

Answer …..........33 [2]

Mark for (c)(i) $=2$ out of 2

Mark for (c)(ii) =1 out of 1

The candidate is only using one out of the two possible routes. Mark for (c)(iii) $=1$ out of 2

Total mark awarded = 7 out of 8

How the candidate could have improved their answer

(c)(iii) The candidate only used the one route on the tree diagram and needed to use the other route as well. So the calculation $\left(\frac{4}{12} \times \frac{8}{11}\right)+\left(\frac{8}{12} \times \frac{4}{11}\right)$ was needed.

Example Candidate Response - middle

4

$\begin{array}{llllllllll}\mathrm{T} & \mathrm{R} & \mathrm{I} & \mathrm{G} & \mathrm{O} & \mathrm{N} & \mathrm{O} & \mathrm{M} & \mathrm{E} & \mathrm{T} \\ \mathrm{R} & \mathrm{Y}\end{array}$

Twelve lettered tiles spelling the word TRIGONOMETRY are placed inside a bag.
(a) A tile is taken at random from the bag.

Find the probability that the tile shows a letter R.
Give your answer as a fraction in its simplest form.

(b) All the tiles are placed back in the bag, autile is then taken at random and placed on tie table. A second tile is taken at random and placed to the right of the first tile. A third tile is taken at random and placed to the right of the second tile.

Find the probability that, in the order the tiles were placed on the table, they spell GET,
$P(G T)=\frac{1}{12} \times \frac{1}{11} \times \frac{1}{101}=$
$=\frac{1}{1820}$
Answer

Examiner comments

Mark for (a) = 1 out of 1

1 The candidate needs to use the fraction $\frac{2}{10}$ here instead, since there are 2 letter Ts left in the bag. Mark for (b) $=0$ out of 2
(c) Vowels are the letters A, E, I, O and U.

All other letters are consonants.
All the twelve tiles are placed back in the bag and two, tiles are taken at random, without replacement.
(i) Complete the tree diagram.

(ii) Find the probability that the tiles both show vowels.

$$
\begin{aligned}
P Q D & =\frac{4}{+24} \times \frac{51}{11} \\
& =\frac{24}{1+4}
\end{aligned}
$$

Answer

(iii). Find the probability that one tile shows a vowel and one tile shows a consonant.

$$
\begin{aligned}
& P(y+c)=\left(\frac{4}{42} \times \frac{8}{11}\right)+\left(\frac{2}{8} \frac{3}{12}\right) \\
& =\frac{8}{48}+\frac{32}{12} \\
& =\frac{32+56}{132} \\
& =\frac{88}{2}
\end{aligned}
$$

Mark for (c)(i) $=2$ out of 2

Mark for (c)(ii) = 1 out of 1

2 The candidate correctly shows the product of the two probabilities.
(3) The two probabilities have been added here, instead of multiplying them as required and is also using the incorrect fraction of $\frac{7}{11}$.

Mark for (c)(iii) = 1 out of 2

Total mark awarded = 5 out of 8

How the candidate could have improved their answer

- (b) The candidate had the correct probabilities for the first two tiles drawn, but should have had $\frac{2}{10}$ for the third.
- (c)(iii) The candidate incorrectly used $+\frac{7}{11}$ in the second pair of probabilities, instead of $\times \frac{4}{11}$.

4

\section*{| T | R | I | G | O | N | O | M | E | T | R | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Twelve lettered tiles speling the word TRIGONOMETRY are placed inside a bag.
(a) A tile is taken at random from the bag.

Find the probability that the tile shows a letter R .
Give your answer as a fraction in its simplest form.

$$
\frac{t^{1}}{12 x}
$$

$$
=\frac{1}{6}
$$

Answer $\quad \frac{1}{6}$ [1]
(b) All the tiles are placed back in the bag, a tille is then taken at random and placed on the table, A second tile is taken at random and placed to the right of the first tile.
A third the is taken at random-and placed to the right of the second tile.

Find the probability that, in the order the tiles were placed on the table, they spell GET.

$$
\begin{aligned}
& 1-0,08 \\
& =0,92
\end{aligned}
$$

Mark for (a) = 1 out of 1

1 The candidate needs to use the correct product of $\frac{1}{12} \times \frac{1}{11} \times \frac{2}{10}$ here. Mark for (b) = 0 out of 2

Answer, 92

Example Candidate Response - low, continued

(c) Voweis are the letters A, E, I, O and U.

All other letters are consonants.
All the twelve tiles are placed back in the bag and two tiles are taken at random, without replacement.
(i) Complete the tree diagram.

2 The correct denominators are given for all of the fractions, but all of the numerators are incorrect. Candidates need to remember that the probabilities on a pair of branches, must total 1. Mark for (c)(i) $=0$ out of 2
[2]
(ii) Find the probability that the tiles both show vowels.

位

$$
\begin{aligned}
& \frac{4}{172} \times \frac{\rho}{11} \\
&= \frac{1}{11}
\end{aligned}
$$

(iii) Find the probability that one tile shows a vowel and one tile shows a consonaut.

$$
\begin{aligned}
& =\left(\frac{6}{12} \times \frac{3}{11}\right) \times\left(\frac{4}{12} \times \frac{5}{11}\right) \\
& =\frac{3}{22} \times \frac{5}{37} \\
& =\frac{5}{242}
\end{aligned}
$$

(3)

3 The candidate correctly multiplies the Follow Through probabilities on the tree diagram, which is sufficient for the method here.
Mark for (c)(iii) $=1$ out of 2

Total mark awarded = 3 out of 8

How the candidate could have improved their answer

- (b) The candidate should have shown the multiplication of the 3 probabilities, $\frac{1}{12} \times \frac{1}{11} \times \frac{2}{10}$.
- (c)(i) The tree diagram was completed inaccurately and did not show an understanding that the probabilities on the pairs of branches must total 1 .
- (c)(iii) The candidate needed to use the pair of probabilities on the other route as well.

Common mistakes candidates made in this question

- (c)(i) Candidates need to ensure that a pair of probabilities, on the branches of a probability tree diagram, when added together, must total 1.
- (c)(iii) Some candidates did not always identify that there were two possible routes that satisfied the condition for one tile showing a vowel and the other showing a constant.

Question 5

Example Candidate Response - high

Examiner comments

5 (a)
$1,7,13,19,25, \ldots$
(i) Find an expression, in tems of n, for the nth tenn of this sequence.

$$
\begin{align*}
& \text { Diferen } a=7-1=6 \\
& a-d=1-6=-5 \tag{2}
\end{align*} \quad \text { Gn }-5
$$

Answer Gn-5 \qquad
(ii) Explain why 251 is not a term in this sequence.

$$
\begin{aligned}
& 6(43)-5=253 \\
& 6(4.2)-5=247
\end{aligned}
$$

Here is another sequence.

$$
5,8,13,20,29 ; \ldots .
$$

The p th term of this sequence.is $p^{2}+4$
Write down an expression, in terms of,p, for the p th term. of these sequences.
(i) $-2,1,6,13,22, \ldots$

Answer $. . p^{2}-3$
(ii) $7,12,19,28,39, \ldots$
(1)

$$
\begin{aligned}
& 30^{2}+4 \\
& n^{3}+24
\end{aligned}
$$

Mark for (a)(i) $=2$ out of 2

Mark for (a)(ii) =1 out of 1

Mark for (b)(i) =1 out of 1

1. This is not the answer required, i.e. $p^{2}+2 p+4$.

Mark for (b)(ii) $=0$ out of 1
(c) The diagrams below show the first three patterns in a sequence. The patterns are made from short diagonal lines.

(i) Draw Pattern 4 on the dotty grid below.

(ii) Complete the table below for the number of short lines in Patterns 4 and 5 .

Pattern	1	2	3	4	5
Number of short lines	4	10	18	28	40

(iii) Find an expression, in terms of t, for the number of short lines in Pattern t.

$$
\text { Answer } \quad n^{2}+3 n
$$

Mark for (c)(i) = 1 out of 1

Mark for (c)(ii) $=2$ out of 2

Mark for (c)(iii) $=2$ out of 2

Total mark awarded = 9 out of 10

How the candidate could have improved their answer

(b)(ii) The correct answer of $p^{2}+2 p+4$ should have been given.

5 (a) $\quad 1,7,13,19,25, \ldots$
(i) Find an expression, in terns of n, for the nth term of this sequence.
i
A) 1

$$
n=a+(n-1) 6
$$

(ii) Explain why 251 is not a term in this sequence.

(b) Here is another sequence.

$$
\begin{aligned}
& 3,5 \\
& 5,8,13,20,29, \ldots \\
& 12
\end{aligned}
$$

The p th term of this sequence is $p^{2}+4$
Write down an expression, in terms of p, for the p th term of these sequences.
(2) $+57+9$
(i) $-2,1,6,13,22, \ldots$
 (ii) $7,12,19,28,39, \ldots$

- -1

Examiner comments

1) The answer is partly correct as it is of the form $6 n+k$.
Mark for (a)(i) = 1 out of 2

2 The answer is too vague. Acceptable answers would be:
$6 n-5=251$
$6 n=256$
so $n=42.666$
so n is not a whole number
OR
247 is in the sequence and the next term is 253.
Mark for (a)(ii) $=0$ out of 1 Mark for (b)(i) = 1 out of 1

3 Although the candidate shows an appreciation that the expression contains p^{2}, the full answer of $p^{2}+2 p+4$ is required. Mark for (b)(ii) $=0$ out of 1
(c) The diagrams below show the first three patterns in a sequence.
The patterns are made from short diagonal lines.
(i) Draw Pattern 4 on the dotty grid below
(ii) Complete the table below for the number of short lines in Patterns 4 and 5 .

Pattern	1	2	3	4	5
Number of short lines	4	10	18	28	40

(iii) Find an expression, in terms of t, for the number of short lines in Pattern t.

$$
\begin{aligned}
\text { Pattern expression, in terms of } t \text {, for the number of short lines in Pattern } t & =\left(\begin{array}{c}
t \times n u m b e r ~ o f ~ b o x e s ~ t e w e n ~
\end{array}\right) \\
& =t \times \sqrt{n u})
\end{aligned}
$$

Mark for $(\mathrm{c})(\mathrm{i})=1$ out of 1

Mark for (c)(ii) $=2$ out of 2
4. The candidate is not giving an answer which contains $t^{2}+$ so does not score any mark. Mark for (c)(iii) $=0$ out of 2

Total mark awarded = 5 out of 10

How the candidate could have improved their answer

- (a)(i) The answer contained ' $6 n$ ' so was partly correct, but needed to be $6 n-5$ for a fully correct answer.
- (a)(ii) An acceptable reason was needed, such as: ' 256 is not exactly divisible by 6 ' or ' 247 is in the sequence and the next one is 253 '
- (b)(ii) The candidate did appreciate that the expression included p^{2}, but needed to give the correct answer of $p^{2}+2 p+4$.
- (c)(iii) The candidate did not arrive at an expression containing t^{2}, so was unable to gain any mark here.

Example Candidate Response - low

5. (a) $1,7,13,19,25, \ldots$
(i) Find an expression, in terms of n, for the nth term of this sequence.

(ii) Explain why 251 is not a term in this sequence.

$$
\begin{aligned}
& n+6=25.1 \\
& n=251-6
\end{aligned}
$$

Answer it doen not follow the pettern........ $A+6=45 \cdot 25-6=245$
(b) Here is another sequence

$$
5,8,13,20,29, \ldots
$$

The p th term of this sequence is $p^{2}+4$.
Write down antexpression, in terms. of p, for the p th term of these sequences.
(i)
 Answer $2(n+2)$ \qquad[I]
(ii) $7,12,19,28,39 ; \ldots$
; 1 i

Examiner comments

1 The candidate's answer is not of the form $6 n+k$, so does not score a mark.
Mark for (a)(i) = 0 out of 2

2 The candidate's equation is incorrect, so further progress cannot be made.
It should be $6 n-5=251$.
Mark for (a)(ii) $=0$ out of 1

3 This is not the correct answer of $p^{2} \square 3$.
Mark for (b)(i) = 0 out of 1

4 This is not the correct answer of $p^{2}+2 p+4$
Mark for (b)(ii) $=0$ out of 1
(c) The diagrams below show the first three patterns in a sequence The patterns are made from short diagonal lines.

(i) Draw Pattern 4 on the dotty grid below

(ii) Complete the table below for the number of short lines in Patterns 4 and 5.

Pattern	1	2	3	4	5
Number of short lines	4	10	18	25	36

(5)
(iii) Find an expression, in terms of t, for the number of short lines in Pattern t.

$$
t=t x \text { eddnumber }
$$

5 The candidate gives incorrect value of 36 , instead of the correct value of 40 .
Mark for (c)(ii) $=1$ out of 2

6 The answer is not of the form . so it is not awarded. Mark for (c)(iii) $=0$ out of 2

Total mark awarded = 2 out of 10

How the candidate could have improved their answer

- (a)(i) The sequence was based on the 6 times table, so the answer should have included the term $6 n$.
- (a)(ii) The candidate needed to give an acceptable reason such as:' 256 is not exactly divisible by 6' or ' 247 is in the sequence and the next one is 253 '.
- (b)(i) The correct answer of $p^{2}-3$ should have been given.
- (b)(ii) The correct answer was $p^{2}+2 p+4$.
- (c)(ii) The candidate needed to give the answer 40 and not 36 , in their table.
- (c)(iii) The candidate did not arrive at an expression containing t^{2}, so was unable to gain any mark here.

Common mistakes candidates made in this question

Candidates should recognise that they may need to work out the differences between the terms in a sequence twice, before the difference becomes constant and that this then shows that the sequence is based on a quadratic expression.

Question 6

Example Candidate Response - high

Examiner comments

6 (a) $A B C$ is a triangle with $A C=6 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. $A B$ has been drawn below.

(i) Using a ruler and a pair of compasses only, construct triangle $A B C$.
(ii) Measure $B \hat{A} C$.

2[1]
(b) A rectangular field has dimensions 220 m by 350 m , each correct to the nearest 10 metres.

Calculate the upper bound for the area of the field.

$$
\begin{aligned}
& 225 \times 355 \\
& =79875 \text { Answer79875.......... } \mathrm{m}^{2}[2]
\end{aligned}
$$

Mark for (a)(i) = 2 out of 2

1 The answer is inaccurate and is outside the accepted tolerance for measuring the angle with a protractor
Mark for (a)(ii) = 0 out of 1 Mark for (b) = 2 out of 2
(c)

The points P, Q, R and S lie on the circumference of a ciscle.
$P Q R S$ is a trapezium with $P Q$ parallel to $S R$.
T is the point on $S R$ such that $Q \hat{P} T=66^{\circ}, Q \hat{T} R=35^{\circ}$ and $T \hat{Q R}=79^{\circ}$.
(i) Find $P \hat{T} S$, giving a reason for your answer.
(ii) Find $P \hat{T} Q$.

$$
\begin{equation*}
180-101 \tag{1'}
\end{equation*}
$$

$$
\text { Answer } 9
$$

(iii) Complete the statements below to show that triangle $P \bar{Q} T$ is congruent to triangle $R T Q$.

1. Angle $P T Q=$ Augle $\ldots \hat{Q} \hat{N}$
2. Angle $P Q T=$ Angle \quad... $\hat{T} Q$. O............
3. Side.ST... T-A Sid TQ........

Triangle $P Q T$ is congruent to triangle $R T Q$.
Congruency conditionngley. Axsoghy. Side
ABS

$$
\begin{align*}
& \text {......creme...equbud. } \tag{2}
\end{align*}
$$

Mark for (c)(i) $=2$ out of 2

Mark for (c)(ii) = 1 out of 1

Mark for (c)(iii) $=3$ out of 3

Total mark awarded = 10 out of 11

How the candidate could have improved their answer

(a)(ii) The candidate needed to measure the angle more accurately.

Example Candidate Response - middle

6 (a) $A B C$ is a triangle with $A C=6 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. $A B$ has been drawn below.

(i) Using a ruler and a pair of compasses only, construct triangle $A B C$.
(ii) Measure $B \hat{A} C$.

$$
\text { Answer } . . .89^{\circ}
$$

(b) A rectangular field has dimensions 220 m by 350 m , each correct to the nearest 10 metres.

Calculate the upper bound for the area of the field.

$$
1 \times k
$$

$225 \times 355 \mathrm{~m} 2$

Examiner comments

1 The candidate's construction is only showing one arc used from A.

Mark for (a)(i) = 1 out of 2
Mark for (a)(ii) = 1 out of 1

2 The correct upper bounds have been multiplied, for both the width and the length of the field, but an incorrect answer has been given. Mark for (b) = 1 out of 2
(c)

The points P, Q, R and S lie on the circumference of a circle: $P Q R S$ is a trapczium with $P Q$ parallel to $S R$.
T is the point-on $S R$ such that $\hat{Q} \hat{P} T=66^{\circ}, Q \hat{T} R=35^{\circ}$ and $T \hat{Q} R=79^{\circ}$.
(i) Find $P \hat{T} S$, giving a reason fọ your answer.
 Up to 180°
(ii). Find $P \hat{T} \underline{Q}$.

Apswer
(iii) Complete the statements below to show that triangle $P Q T$ is congruent to triangle $R T Q$.

1. Angle $P T Q=$ Angle :. $\% \mathrm{~K}^{\circ} \mathrm{QQ} \overline{\mathrm{Q}}$.
2. Angle $P Q T=$ Angle $\ldots \hat{T} Q$

Triangle $P Q T$ is congruent to triangle $R T Q$.
Congruency condition ...AAA... 5 .

3 The candidate is not giving the correct reason here, for alternate angles.
Mark for (c)(i) = 1 out of 2 Mark for (c)(ii) $=1$ out of 1

4 The candidate gives the correct pairs of angles in 1 and 2 , but needs to mention here in 3 , that side QT is a common side.

5 AAA is not a condition of congruency. It needs to be AAS here.
Mark for (c)(iii) $=1$ out of 3
Total mark awarded = 6 out of 11

How the candidate could have improved their answer

- (a)(i) The candidate needed to draw the other arc from B as well and join the points to form the triangle.
- (b) The correct upper bounds were used for both the width and the length, but the candidate did not multiply them correctly to get the correct answer.
- (c)(i) The correct reason should have been given here for 'alternate angles'.
- (c)(iii) The candidate needed to mention that side $Q T$ was a common side.

Example Candidate Response - low

6 (a) $A B C$ is a triangle with $A C=6 \mathrm{~cm}$ and $B C=9 \mathrm{~cm}$. $A B$ has been drawn below.

(i) Using a ruler and a pair of compasses only, construct triangle $A B C$.
(ii) Measure $B \hat{A C}$.

Answer \qquad 65°
(b) A rectangular field has dimensions 220 m by 350 m , each correct to the nearest 10 metres.

Calculate the upper bound for the area of the field.

$$
\begin{aligned}
\text { Area } & =L \times B 2 \\
& =220 \times 350=77000
\end{aligned}
$$

7700

Answer
17000 $\mathrm{m}^{2}[2]$

Examiner comments

1. The candidate only draws one correct arc from B.
Mark for (a)(i) = 1 out of 2 Mark for (a)(ii) = 1 out of 1

2 The upper bounds are incorrect. They should be 225 m and 355 m .
Mark for (b) $=0$ out of 2
(c)

The points P, Q, R and S lie on the circumference of a circle.
$P Q R S$ is a trapezium with $P Q$ parallel to $S R$.
T is the point on $S R$ such that $Q \hat{P} T=66^{\circ}, Q T R=35^{\circ}$ and $T \hat{Q R}=79^{\circ}$.
(i) Find $P \hat{T} S$, giving a reason for your answer.
(3) Ansuer PTS $=145^{\circ}$ becaus AngGe on a $-180^{\circ}-35^{\circ}=145^{\circ}$ [2]
(ii) Find $P \vec{T} Q$.

(iii) Complete the statements below to show that triangle $P Q T$ is congruent to triangle $R T Q$.

1. Angle $P T Q=$ Angle \mathbb{T}
2. Angle $P Q T=$ Angle $\operatorname{RST} R T Q$
3. Angle QTR AnBURST7

8 Triangle $P Q T$ is congruent to triangle $R T Q$.
Congruency condition \qquad
3. The answer is incorrect. It should be 66 degrees.
4. The answer is incorrect. It should be alternate angles. Mark for (c)(i) $=0$ out of 2

5 Follow Through answer of 35 degrees is incorrect. Mark for (c)(ii) = 0 out of 1

6 The candidate correctly completes statements 1 and 2.

7 This statement is incorrect and should be identifying the fact that, QT is a common side.

8 The candidate needs to give the case of congruency, which is AAS.
Mark for (c)(iii) $=1$ out of 3

Total mark awarded = 3 out of 11

How the candidate could have improved their answer

- (a)(i) The candidate needed to draw a second arc and form the triangle.
- (b) The candidate did not give either of the correct bounds needed.
- (c)(i) The correct angle was not given, 66 degrees, nor stated the correct reason for 'alternate angles'.
- (c)(ii) The candidate did not give a correct Follow Through angle from his ' 66 degrees'.
- (c)(iii) The answer needed to mention that side QT was a common side and that the case of congruency was AAS.

Common mistakes candidates made in this question

- (a)(ii) Measuring the obtuse angle at A, instead of the angle BAC.
- (b) Some candidates did not use the correct upper bounds for either the width or the length.
- (c)(iii) The majority of candidates did not show an appreciation of the difference, between congruent triangles and similar triangles. Many candidates thought that showing that the triangles had 3 pairs of equal angles, was sufficient for congruency to be proven.

Question 7

Example Candidate Response - high

Examiner comments

7

The diagram shows the net of an open box of height 3 cm
The area of the base of the box is. $15 \mathrm{~cm}^{2}$.
The length of the rectangular base is $x \mathrm{~cm}$.
The total area of the net is $A \mathrm{~cm}^{2}$.
(a) Show that $A=15+6 x+\frac{90}{x}$.

Ireactit of the box $=1 / 3 / \mathrm{cm}^{\mathrm{cm}}$

$$
A=15+6 x+\frac{90}{x}
$$

$\therefore A=15+2(3 x)+4\left(\frac{5}{x^{2}}\right)$
$A=15+6 x+2\left(\frac{45}{x}\right)$
(b) Graham has one of these open boxes.

The total area of the net of hits box is $65 \mathrm{~cm}^{2}$.
Write down an equation in x and solve it to find the length of the base of Graham's box.
Give your answer correct to 2 decimal places.
$\sigma_{S C{ }^{2}}=15+6 x+\frac{90}{x}$

$$
\begin{gathered}
6 x^{2}-50 x+90=0 \\
x=5 \cdot 70
\end{gathered}
$$

$50=6 x+\frac{90}{x}$
$50=6 x^{2}+90$
$50 x=6 x^{2}+90$

Mark for (a) = 2 out of 2

Mark for (b) = 4 out of 4

Example Candidate Response - high, continued

Examiner comments

(c) (i) Complete the table below for $A=15+6 x+\frac{90}{x}$.

x	2	3	4	5	6	7	8
A	72	63	61.5	63	66	69.9	74.3

(ii) Draw the graph of $A=15+6 x+\frac{90}{x}$ for $2 \leqslant x \leqslant 8$.

(iii) Delilah has one of these open boxes.

The area of the net of her box is $68 \mathrm{~cm}^{2}$.
Use your graph to find the length and width of Delilah's box.
lenght $=x=2.36$
(1) width $=\frac{15}{x}=\frac{15}{2.36}=6.36$

Answer length \qquad cm width $\quad 6.36$ cm [2]
\qquad
[1]
.

Mark for (c)(i) = 1 out of 1

Mark for (c)(ii) $=2$ out of 2

1 The candidate correctly reads the value $x=2.36$ from the graph, but then misunderstands the question, and instead of taking the other reading from the graph, chooses to do an incorrect calculation, to get the value for the width.
Mark for (c)(iii) $=1$ out of 2

Total mark awarded = 10 out of 11

How the candidate could have improved their answer

(c)(iii) The candidate read the width, 2.36 , from the graph correctly. However, they did not obtain the value for the length from the graph, but from the calculation $\frac{15}{2.36}$, which gave a value of 6.36 , which was outside the range of the correct answer. If the candidate had given the value of the length, read from the graph, which was correct, then full marks would have been obtained.

7

The diagram shows the net of an open box of height 3 cm -
The area of the base of the box is $15 \mathrm{~cm}^{2}$.
The length of the rectangular base is $x \mathrm{~cm}$.
The total area of the net is $A \mathrm{~cm}^{2}$.
$-15 \mathrm{~cm}^{2}=x \times$
(a) Show that $A=15+6 x+\frac{90}{x}$.
$A=15+6 x+\left(\frac{15}{x} \times 3\right) \quad 15+\left(6 x+2\left(\frac{15}{x} \times 3\right)\right.$
$A=15+6 x+2\left(\frac{45}{x}\right)$

$$
A=15+6 x+\frac{90}{x}
$$

Y- (b) Graham has one of these open boxes. The total area of the net of his box is $65 \mathrm{~cm}^{2}$.

Write down an equation in x and solve it to find the length of the base of Graham's box. Give your answer correct to 2 decimal places.

Mark for (a) = 2 out of 2

1 The candidate makes the error here of not obtaining $6 x^{2}$, when putting the LHS of the equation over the common denominator, x.

2 The candidate is not achieving a quadratic equation, so cannot score further marks for method.

3 The answer is either 5.70 or 2.63 , so the answer is not awarded the SC marks available. Mark for (b) = 0 out of 4
(c) (i) Complete the table below for $A=15+6 x+\frac{90}{x}$.

x	2	3	4	5	6	7	8
A	72	63	61.5	63	66	69.9	74.3

$15+6 x+\frac{90}{x}=72$
$15+6 x+90=72 x$

[1]
(ii) Draw the graph of $A=15+6 x+\frac{90}{x}$ for $2 \leqslant x \leqslant 8$.

[2]
(iii) Delilah has one of these open boxes.

The area of the net of her box is $68 \mathrm{~cm}^{2}$.
Use your graph to find the length and width of Delilah's box.

$$
\begin{aligned}
& \text { Answer length } 2.3 .3 . \operatorname{san} .6 .6 .6 \mathrm{~cm} \\
& \text { width } 6.5 .5 \ldots \ldots .2 .27 \mathrm{~cm}[2] \\
& \frac{15}{2.3} \text { or } \frac{15}{6.6}
\end{aligned}
$$

Mark for (c)(i) = 1 out of 1
4. The plot at $(8,74.25)$ is inaccurate and is outside the tolerance range.
Mark for (c)(ii) = 1 out of 2

Mark for (c)(iii) $=2$ out of 2

Total mark awarded = 6 out of 11

How the candidate could have improved their answer

- (b) The candidate needed to form the quadratic equation which was required.
- (c)(ii) The answer needed to be more accurate with the plot of the point at ($8,74.25$), which was outside of the allowed tolerance.

7

The diagram shows the net of an open box of height 3 cm .
The area of the base of the box is $15 \mathrm{~cm}^{2}$:
"The length of the rectangular base is $x \mathrm{~cm}$.
The total'area of the net is $A \mathrm{~cm}^{2}$.
(a) Show that $A=15+6 x+\frac{90}{x}$.
length= $6 x$
Aren of bate $=4$

$$
\begin{aligned}
\text { Brea } & =\text { hength } x \text { benth } \\
& =15+6 x+\frac{90}{x}
\end{aligned}
$$

Example Candidate Response - low, continued

(c) (i) Complete the table below for $A=15+6 x+\frac{90}{x}$.

x	2	3	4	5	6	7	8
A	72	63	61.5	63	66	69.9	74.25

(ii) Draw the graph of $A=15+6 x+\frac{90}{x}$ for $2 \leqslant x \leqslant 8$.

4

(iii) Delilah has one of these open boxes. The area of the net of her box is $68 \mathrm{~cm}^{2}$.

Use your graph to find the length and width of Delilah's box.

4. The first reading from the graph is correct, but there is no evidence of a second reading being taken from the graph.

5 The plot at $(4,61.5)$ is inaccurate and is outside the tolerance range.
Mark for (c)(ii) $=1$ out of 2

Mark for (c)(iii) = 1 out of 2

Total mark awarded = 3 out of 11

How the candidate could have improved their answer

- (a) There should have been more explanation of how the constituent areas of the net were arrived at. A good answer would have been:

$$
A=15+2(3 x)+2\left(3\left(\frac{15}{x}\right)\right)
$$

- (b) The candidate needed to arrive at the quadratic equation required at this stage.
- (c)(ii) The plot at point $(4,61.5)$ was inaccurate.
- (c)(iii) The reading from the graph of 2.4 was accurate, but the other reading for the length was not.

Common mistakes candidates made in this question

- (a) Weaker responses from candidates did not give sufficient explanation of how the constituent areas of the net, were arrived at. For example, it was not sufficient to state that $2 \times \frac{45}{x}=\frac{90}{x}$ without showing that $\frac{45}{x}$ comes from $3 \times \frac{15}{x}$.
- (c)(iii) Candidates need to ensure that when they are asked to give readings from their graph, then they should do so. Some candidates correctly gave one reading, but then used this value in a calculation to obtain the other. This resulting value did not always fall within the allowed accuracy range for a reading taken from the graph.

Question 8

Example Candidate Response - high

Examiner comments

8 The grid shows triangles A and B and rectangle R.

(a) Triangle A is mapped onto triangle B by the single transformation K .

Find the matrix representing transformation K .
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \times\left(\begin{array}{ccc}-3 & -3 & -4 \\ 4 & 2 & 2\end{array}\right)=\left(\begin{array}{ccc}-4 & -2 & -2 \\ -3 & -3 & -4\end{array}\right)$
$\left(\begin{array}{lll}-3 a+4 b & -3 a+2 b & -4 a+2 b \\ -9 c+4 d & -3 c+2 d & -4 d+2 d\end{array}\right) \quad \begin{aligned} & -3 c+4 b=-9 \\ & -4 c+2 d=-4\end{aligned}$

$$
\begin{array}{lll}
-3 a+4 b=-4 & a=0 & b=-1 \tag{2}\\
-3 a+2 b=-2 & c=1 & d=0
\end{array} \quad \text { Answer } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(b) Triangle B is mapped onto triangle C by a reflection in the y-axis. On the diagram, draw triangle C.
(c) Triangle A is mapped onto triangle C by the single transformation L.

Describe fully the single transformation L .
Answer refection ron the una $-x$ \qquad
(d) Rectangle R is mapped onto rectangle S by a translation by the vector $\binom{-2}{3}$.

On the diagram, draw rectangle S.
[2]

Mark for (a) = 2 out of 2

Mark for (b) = 1 out of 1
1 The candidate correctly identifies that the transformation is a reflection, but gives the incorrect equation of the line. It should be $y=x$.
Mark for (c) $=1$ out of 2
Mark for (d) $=2$ out of 2

Total mark awarded = 6 out of 7

How the candidate could have improved their answer

(c) The answer correctly stated that transformation was a reflection, but needed to give the line as $y=x$ and not $y=-x$.

Example Candidate Response - middle

8 The grid shows triangles A and B and rectangle R.

(a) Triangle A is mapped onto triangle B by the single transformation K .

Find the matrix representing transformation K .

$$
\begin{aligned}
& \text { the matrix representing transformation } K \text {. } \\
& \left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \times\binom{-3}{2}=\binom{-2}{-3}
\end{aligned}
$$

(b) Triangle B is mapped onto triangle C by a reflection in the y-axis. On the diagram, draw triangle C.
(c) Triangle A is mapped onto triangle C by the single transformation L.

Describe fuily the single transformation L.
Answer:Reflection in the lue $y=-x$ ax|[[2]
(d) Rectangle R is mapped onto rectangle S by a translation by the vector $\binom{-2}{3}$. On the diagram, draw rectangle S

1) The candidate gives a 2×2 matrix, but only the top row is correct.
Mark for (a) = 1 out of 2
Mark for (b) = 1 out of 1

2 The candidate identifies that the required transformation is a reflection, but gives the incorrect equation of the line. It should be $y=x$.
Mark for (c) $=1$ out of 2
Mark for (d) = 2 out of 2

Total mark awarded = 5 out of 7

How the candidate could have improved their answer

- (a) Only the top row of the matrix correct.
- (c) The answer correctly stated that it was a reflection transformation, but needed to give the line as $y=x$ and not $y=-x$.

8 The grid shows triangles A and B and rectangle R.

(a) Triangle A is mapped onto triangle B by the single transformation K .

Find the matrix representing transformation K .
(b) Triangle B is mapped onto triangle C by a reflection in the y-axis.

On the diagram, draw triangle C

The candidate correctly identifies that the required matrix is of order 2×2, but is not giving either a correct row or a correct column here.
Mark for (a) = 0 out of 2
2. The triangle is of the correct size and orientation, but it is not in the correct position for the required reflection. Mark for (b) $=0$ out of 1

Example Candidate Response - low, continued

(c) Triangle A is mapped onto triangle C by the single transformation L.

Describe fully the single transformation ,

(d) Rectangle R is mapped onto rectangle S by a translation by the vector $\binom{-2}{3}$. On the diagrami, draw reclangle S.

Examiner comments

3. The correct single transformation has not been identified here. It should be a reflection in the line $y=x$. Mark for (c) $=0$ out of 2 Mark for $(d)=2$ out of 2

Total mark awarded = 2 out of 7

How the candidate could have improved their answer

- (a) The candidate gave a 2×2 matrix for the answer, but neither a row nor column was correct.
- (b) The candidate drew a triangle of the same size and correct orientation, but it was a reflection in the line $x=-0.5$ and not the y axis.
- (c) The correct answer was single transformation and the reflection in the line $y=x$.

Common mistakes candidates made in this question

(c) The most common mistake was for candidates to give the incorrect line $y=-x$, for the equation of the line of reflection.

Question 9

Example Candidate Response - high
Examiner comments

9

The diagram shows a sector of a circle of radius. 8 cm and angle 70°.
(a) Calculate the shaded area,

Area of Shaded Grey = Area of sector - Arse of triangle

$$
\begin{aligned}
& =\left(46 / 360 \times \pi r^{2}\right)-\left(1 / 2 r^{2} \sin \theta\right) \\
& =(70 / 360 \times 64 \times 7)-(1 / 2 \times 4 \times 0.9397) \\
& =39.10-30.07 \\
& =9.03 \mathrm{~cm}
\end{aligned}
$$

Mark for (a) = 4 out of 4

Example Candidate Response - high, continued

(b)

A piece of chocolate is in the shape of a prism with the shaded area from part (a) being its cross section.
The rectangular base of the chocolate is 16 cm by $x \mathrm{~cm}$.
The piece of chocolate is to be placed in a box which is a cuboid of size 16 cm by $x \mathrm{~cm}$ by 1.5 cm .
(i) Show that the chocolate will fit inside the box

To froverthis un prove Hat 152 the height of the Churolote (wee There is no need to bother about bide x as both the beedth of the chowalath and the box are the same ie x)
 $t+K=8 \pi$ (radius of (ide $)$
$\left.=8 \cos \frac{10}{2}\right)=8 \cos 25$
$=6.55 \mathrm{~cm}$
$k=8.6 .55$
$=1.45 \mathrm{~cm}$
The the dimension of the choublate is 16 cm by $\mathrm{x} \times \mathrm{cm} \times 45 \mathrm{~cm}$
It \therefore It can fit into the culvied box:
[3]
(ii) These boxes are to be packed in cartons in the shape of a cuboid. The size of each carton is 48 cm by $4 x \mathrm{~cm}$ by 24 cm .

Find the maximum number of boxes that can be packed inside one carton.
No of boxes: $\frac{\text { Volume of } 1 \text { cation }}{\text { Game of } 1 \text { box }}$
$=\frac{3.4 \times 4 \times 24}{16 \times 1 \times 5}=2 \times 4 \times 24=192$
\qquad 19)
[2]

Examiner comments

1 The candidate should more accurately, use the 'greater than' inequality sign here, not the 'greater than or equal to' sign. This does not however, detract from an otherwise, excellently laid out answer
Mark for (b)(i) = 3 out of 3

Mark for (b)(ii) $=2$ out of 2

Total mark awarded = 9 out of 9

How the candidate could have improved their answer

The candidate achieved full marks.

Example Candidate Response - middle

9

The diagram shows a sector of a circle of radius 8 cm and angle 70°.
(a) Calculate the shaded area.

Are e of segment $=$ Ares of seato - Area of tray

$$
=\left(\frac{70}{300} \times 2-\frac{\pi r^{2}}{x 0}\right)-\left(\frac{1}{2} \times 8 \times 8 \times \sin 70\right)
$$

$$
=\left(\frac{7}{36} \times{ }_{448}^{64 \pi}\right)-4,32 \times \sin 70 .
$$

$$
=\frac{H 4 \pi}{36}-3 \cos 07030 \cdot 1
$$

$$
=39.1-30.1
$$

$$
=9
$$

Examiner comments

1 The two correct formulae needed have been used in order to calculate the shaded area.

The candidate is approximating the values of the answers, to the areas of the sector and the triangle, too early.
This leads to an inaccurate final answer.
Mark for (a) = 3 out of 4

Example Candidate Response - middle, continued

(b)

A piece of chocolate is in the shape of a prism with the shaded area from part (a) being its cross section:
The rectangular base of the chocolate is 16 cm by $x \mathrm{~cm}$.
The piece of chocolate is to be placed in a box which is a cuboid of size 16 cm by $x \mathrm{~cm}$ by $1,5 \mathrm{~cm}$.

olane of prisur $=9 \times 16=144 \mathrm{~cm}^{3}$ jolums of box $-16 \times 1.5 \times 9.18=220.32 \mathrm{c}-3$
\therefore Ther will still be space in the bose if the
chocolet is kept inside.
(ii) These boxes are to be packed in cartöns in the shạpe of a ciboid.

The size of each caton is 48 cm by $4 x \mathrm{~cm}$ by 24 cm .
Find the maximum number of boxes that can be packed inside one carton.

$$
\begin{aligned}
& \text { Volure of coto }=48 \times 42 \times 24 \\
& 0 \quad=48 \times 4(9.18) \times 24 \\
& \begin{aligned}
&=42301.44 \\
& \text { votures of a box }=220.32
\end{aligned} \frac{42301.44}{220.32}=192 \\
& \begin{array}{c}
\therefore \quad 192 \text { boves oan be pocked in } \\
\text { Answer192.......nose....... [2] carton }
\end{array}
\end{aligned}
$$

Examiner comments

2 The candidate does not show an understanding, that it is necessary to show that the height of the chocolate prism must be less than 1.5 cm .
Mark for (b)(i) $=0$ out of 3

Mark for (b)(ii) $=2$ out of 2

Total mark awarded = 5 out of 9

How the candidate could have improved their answer

- (a) The formulae for the area of a sector and the area of a triangle was correct, but in the working out stage, there was early approximation, before the final answer was reached. This led to the latter being inaccurate.
- (b) The correct answer was 1.45 or 1446 to 1.447 so the height of the chocolate prism is less than 1.5 cm .

Example Candidate Response - low

9

The diagram shows a sector of a circle of radius 8 cm and angle 70°
(a) Calculate the shaded area.

$$
\begin{aligned}
& \frac{\theta}{360} \times 4 \pi^{2}=\frac{70}{360} \times 4 \pi \times 88^{2}=489.39 . \\
& \text { area of circle }=\frac{\pi i^{2}}{2}=\frac{\pi \cdot 8^{2}}{2}=100.5 \\
& 469-100+5=368 \mathrm{~cm}= \\
& 100.5-39 \div 61.4 \\
& \text { 68. } 61.4
\end{aligned}
$$

Examiner comments

1) The correct formula has been shown for the calculation of the area of the sector.
2. The candidate has used the incorrect method for calculating the area of the triangle. Mark for (a) = 1 out of 4

Example Candidate Response - low, continued

Examiner comments

(b)

A piece of chocolate is in the shape of a prism with the shaded area from part (a) being its cross section.
The rectangular base of the chocolate is 16 cm by $x \mathrm{~cm}$.
The piece of chocolate is to be placed in a box which is a cuboid of size 1.6 cm by $x \mathrm{~cm}$ by 1.5 cm .
(i) Show that the chocolate will fit inside the box.

$$
\begin{aligned}
& \text { Box }=16 \times x \times 1.5=24 x . \\
& \text { Chosolate }=16 \times x=16 x .
\end{aligned}
$$

(ii) These boxes are to be packed in cartons in the shape of a cuboid.

The size of each carton is 48 cm by $4 x \mathrm{~cm}$ by 24 cm .
Find the maximum number of boxes that can be packed inside one carton.

Answer 288 boxas

3 The candidate does not show an understanding of what is required here. Namely, that it is necessary to show that the height of the shaded cross section must be less than 1.5 cm .
Mark for (b)(i) $=0$ out of 3

$$
\begin{aligned}
& 7 \frac{72}{2} \neq 24 \times 66 \times 4=1473.6 \mathrm{box} \\
& \text { chisolate }=16 \times 61.4=982.4 \text { chocotate. }
\end{aligned}
$$

4. The candidate correctly evaluates the size of a carton, $4608 x \mathrm{~cm}^{3}$, but does not then divide this by $16 \times 1.5 \mathrm{xcm}^{3}$ Mark for (b)(ii) $=0$ out of 2

Total mark awarded = 1 out of 9

How the candidate could have improved their answer

- (a) The candidate should have used the correct method for finding the area of the triangle.
- (b)(i) The candidate should have shown that the height of the chocolate bar was less than 1.5 cm .
- (b)(ii) The candidate did not see the connection between the volume of the box and the volume of the carton was $3 \times 4 \times 16$.

Common mistakes candidates made in this question

- (a) Some candidates lost the accuracy in their answers because of too early approximation in the method.
- (b)(i) The majority of candidates misunderstood that the requirement of this question was to find the height, $h \mathrm{~cm}$, of the piece of chocolate and show that it was less than 1.5 cm . Very few candidates used the correct trigonometry, $h=8 \square 8 \cos 35^{\circ}$, which showed $h=1.45 \mathrm{~cm}$ to 3 significant figures. The vast majority of candidates tried to compare the volume of the box to the volume of the carton.

Question 10

Example Candidate Response - high

Examiner comments

10 A boat leaves A and travels 12 km to B.
(a) The boat leaves A at 1025 and travels at an average speed of $15 \mathrm{~km} / 7$

At what time does the boat arrive at B ?

$$
\text { time }=\frac{\text { Distonce }}{\text { Speed }}=\frac{12}{15}=0.8 \text { hours } \times 60=48 \text { minutes }
$$

\qquad 113 \qquad [2]
(b)

The bearing of B from A is 056°.
B is 2 km due west of C.

Calculate $A C$.

$$
\begin{aligned}
& A \hat{B} C \subset 180 \\
&=90-(56+x)+x+A \hat{B C} \\
& 180=90-96-x+x+A \hat{B C} \\
& 180=34+\hat{A B C} \\
& A \hat{B} C=180-34 \\
& A \hat{B C}=146^{\circ} \\
& A C^{2}=A B^{2}+B C^{2}-2(A B \times B C) \operatorname{Cos} \hat{B} A C=\sqrt{187 .} \\
& A C^{2}=12^{2}+2^{2}-2(12 \times 2) \cos 146 \\
& A C^{2}=144+4-48(-0.829) \\
& A C^{2}=148+39.794 \\
& A C^{2}=187.794
\end{aligned}
$$

Mark for (a) = 2 out of 2

Mark for (b) = 4 out of 4

Example Candidate Response - high, continued
(c)

C is the base of a cliff.
The top of the cliff, D, is vertically above C.
$D C$ is perpendicular to $B C$ and $D C=1.05 \mathrm{~m}$.
Calculate the angle of elevation of D from B.

$$
\begin{gathered}
\operatorname{Tan} \theta=\frac{105}{2} 1 \\
T_{a_{2} \theta}=52.5
\end{gathered}
$$

$$
\begin{array}{r}
\theta=\tan (52.5) \\
\theta=88.9^{\circ}
\end{array}
$$

Examiner comments

1 The candidate does not convert the metres and kilometres, to a common unit, before doing the $\tan ^{-1}$ calculation.
Mark for (c) $=1$ out of 2

Total mark awarded = 7 out of 8

How the candidate could have improved their answer

(c) It was necessary to convert metres to kilometres, or kilometres into metres first of all, before proceeding with the calculation.

Example Candidate Response - middle

10 A boat leáves A and travels 12 km to B.
(a) The boat leaves A at 1025 and travels at an average spced of $15 \mathrm{~km} / \mathrm{h}$.

At what time does the boat arrive at B ?

$=0.8=45$ momuts
(b)

$$
\tan \theta=\frac{12}{2}
$$

$$
\theta=10,5
$$

$\tan \theta=\frac{12}{2}$
$f x^{2}=12^{2}+x^{2}-2(12)(x) \cos (90 I)$
$\theta=\tan ^{-1}\left(\frac{11}{\lambda}\right)$
$0: 90.5$
$A C^{2}=12^{2}+1^{2}-2(12)(2) \cos (80.5)$
$A C^{2}=140$
$A C=\sqrt{140}$
$A E=11.8$

Examiner comments

Mark for (a) = 2 out of 2

1 The candidate identifies that the solution to find side $A C$, requires the use of the Cosine rule. However, the value of the angle 80.5 degrees used, is incorrect.
Mark for (b) $=2$ out of 4

Example Candidate Response - middle, continued
(c)

C is the base of a cliff.
. The top of the cliff, $D_{\text {, }}$ is vertically above C.
$D C$ is perpendicular to $B C$ and $D C=105 \mathrm{~m}$.
Calculate the angle of elevation of D from B.

Examiner comments

2 The candidate has not converted metres and kilometres correctly to a common unit, and is not using the $\tan ^{-1}$ function.
Mark for (c) $=0$ out of 2

Total mark awarded = 4 out of 8

How the candidate could have improved their answer

- (a) The candidate correctly identified that it was necessary to use the Cosine rule to calculate side AC, but lost the accuracy required, in order to be able to obtain the correct answer.
- (c) It was necessary to use $\tan ^{-1} D B C$.

Example Candidate Response - low

10 A boat leaves A and travels $I 2 \mathrm{~km}$ to B.
(a) The boat leaves A al 1025 and travels at an ayerage speed of $15 \mathrm{~km} / \mathrm{h}$

At what time does the boat arrive at B ?

$0.8+10: 25$
Answer!! : 3.5.
(b)

The bearing of B from A is 056°
B is 2 km due west of C.
Calculate $A C$.
SOH 厄AA TOA
$90-56=34^{\circ}$

Answe

\qquad 14,5 km [4]

Examiner comments

1) The candidate knows that to find the time, requires $\frac{\text { distance }}{\text { speed }}$.

2 They should now convert 0.8 hr to minutes, and add to the 10:25. Mark for $(a)=1$ out of 2

3 Incorrect right-angled triangle trigonometry has been used, instead of using the Cosine rule. Mark for (b) $=0$ out of 4

How the candidate could have improved their answer

- (a) The candidate correctly evaluated the time taken for the journey as 0.8 hr , but did not correctly convert this to minutes and add it onto the start time of the journey, in order to find the arrival time.
- (b) The candidate needed to use the Cosine rule here to calculate the length of $A C$, but tried to use right-angled triangle trigonometry instead
- (c) The candidate correctly used the inverse $\tan D B C$, but then subtracted this value from 180 degrees to obtain the final answer, which was unnecessary.

Common mistakes candidates made in this question

- (a) Some candidates incorrectly gave the time taken for the journey as $\frac{\text { distance }}{\text { speed }}$.
- (b) Candidates often did not convert the 105 m and 2 km to a common unit, before proceeding with the calculation.

Question 11

Example Candidate Response - high

Examiner comments

11 (a)

The grid shows the line $4 y=x+2$.
By drawing appropriate lines, indicate the region R defined by all these inequalities.

$$
\begin{array}{lcc}
x \geqslant 1 & x+y \leqslant 5 & 4 y \geqslant x+2 \\
x, y, & x=y, 2 &
\end{array}
$$

(b) A is the point $(-1,3)$ and B is the point $(5,5)$.
(i) Calculate the length $A B$.
$A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{[5-(-1)]^{2}+(5-3)^{2}} \\
& =\sqrt{6^{2}+2^{2}}
\end{aligned}
$$

$$
\begin{align*}
& 6^{2}+2^{2} \tag{2}\\
& =\frac{\sqrt{36+4}}{\sqrt{40}}=6 \cdot 3245
\end{align*}
$$

ii) Find the equation of the line perpendicular to $A B$ that passes through the midpoint of $A B$. $\binom{x_{1},(i i)}{-1,3}\binom{x_{2} y_{2}}{5,5^{2}}+1 / p$ of $A B=\left(\frac{x_{2}+x_{1}}{2}, \underline{y_{2}+y_{1}}\right) y=m x+c$

Mark for $(a)=3$ out of 3

Mark for (b)(i) = 2 out of 2

1 The candidate finds the correct coordinates of the midpoint of $A B$.

2 This shows knowledge that the product of the gradients for a line and a perpendicular line, must be -1 .
3. The candidate needs to obtain the correct equation, which is $y=-3 x+10$
Mark for (b)(ii) $=2$ out of 4

Total mark awarded = 7 out of 9

How the candidate could have improved their answer

(b)(ii) The candidate correctly found the coordinates of the midpoint of $A B$ and knew that the product of the gradients of the two perpendicular lines was -1 . The candidate needed to obtain the correct gradient of $\square 3$ for the perpendicular line, in order to progress further.

Example Candidate Response - middle

Examiner comments

11 (a)

The grid shows the line $4 y=x+2$.
By drawing appropriate lines, indicate the region R defined by all these inequalities.

$$
\begin{equation*}
x \geqslant 1 \quad x+y \leqslant 5 \quad 4 y \geqslant x+2 \tag{3}
\end{equation*}
$$

(b) A is the point $(-1,3)$ and B is the point $(5,5)$.
(i) Calculate the length $A B$.
$2+2$

$$
\begin{aligned}
& 5-3=2 \\
& 5+1=6 \\
& \sqrt{6^{2}+2^{2}}
\end{aligned}
$$

Answer \qquad 6.32
(ii) Find the equation of the line perpendicular to $A B$ that passes through the midpoint of $A B$.

$$
\begin{array}{rlr}
5-1=4 & 5+3=8 \\
\frac{4}{2} \quad \frac{8}{2} & =(2,4) \\
y-y_{1} & =m\left(x-x_{1}\right) \quad \frac{\Delta y}{\Delta x}=\frac{1}{3} 3 \\
y-y_{1} & =\frac{1}{3}(4(-x 1) \quad \\
3 \times y-4 x^{3} & =\frac{1}{3}(x-2) \times 3 \\
3 y-12 & =x-2 \\
\frac{3}{3} y & =1 / 3 x+10
\end{array} \quad \begin{aligned}
& 3 y=1
\end{aligned}
$$

The candidate draws the correct line for $x=1$, but the other required line $x+y=5$, is incorrectly drawn. Also, the candidate draws the unnecessary line $y=x$, so the region, R , is incorrectly shaded Mark for (a) = 1 out of 3

Mark for (b)(i) = 2 out of 2

2 The correct coordinates of the midpoint of $A B$ are obtained.

3 The candidate obtains the correct gradient of $A B$.
4. The candidate is not using the correct gradient of the line which is perpendicular to $A B$. Mark for (b)(ii) $=1$ out of 4

Total mark awarded = 4 out of 9

How the candidate could have improved their answer

- (a) The candidate correctly drew the line $x=1$, but could not draw the other required line correctly, so could not identify the correct region required.
- (b)(ii) The candidate correctly found the midpoint of $A B$, but was unable to evaluate the gradient of the perpendicular line and consequently find the equation of the perpendicular line, as required.

Example Candidate Response - low

Examiner comments

11 (a)

The grid shows the line $4 y=x+2$.
By drawing appropriate lines, indicate the region R defined by all these inequalities.

$$
\begin{equation*}
x \geqslant 1 \quad x+y \leqslant 5 \quad 4 y \geqslant x+2 \tag{3}
\end{equation*}
$$

(b) A is the point $(-1,3)$ and B is the point $(5,5)$.
(i) Calculate the length $A B$.
$* v_{y}=5-3=2$
$x=5-(-1)=5+1=6$

$$
\begin{aligned}
& \frac{1}{2}\left(x_{2}-x_{1}\right), \frac{1}{2}\left(y_{2}-y_{1}\right) \\
& \frac{1}{2}(5-(-1)), \frac{1}{2}(5-3) \\
& \frac{1}{2}(6), 1 / 2(2) \\
& 3,12
\end{aligned}
$$

(ii) Find the equation of the line perpendicular to $A B$ that passes through the midpoint of $A B$.

$$
\begin{align*}
& A B^{2}=2^{2}+6^{7} \\
& A B^{2}=4+36 \\
& A B^{2}=40 \\
& A B=\sqrt{40}=6.324 \\
& \text { Answer } \quad 6.32 \tag{2}
\end{align*}
$$

2 The candidate works out the correct displacement of the midpoint, relative to point A (-1, 3). But now needs to do $(-1,3)+(3,1)$ which gives the correct midpoint (2, 4).
Mark for (b)(ii) $=0$ out of 4

Total mark awarded = 2 out of 9

How the candidate could have improved their answer

- (a) The candidate needed to draw a longer line at $x=1$ in order to score the mark for this line.
- (b)(ii) The candidate did not add on the movement of $x=3$ units and $y=1$ unit, to the point $A(-1,3)$, in order to obtain the correct midpoint $(2,4)$.

Common mistakes candidates made in this question

(b)(ii) Candidates should remember that the product of the gradients of two perpendicular lines is -1 .

Cambridge Assessment International Education
The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA, United Kingdom
t: +44 1223553554
e: info@cambridgeinternational.org www.cambridgeinternational.org
Copyright © UCLES January 2019
https://xtremepape.rs/

